Đặt \(I = \int\limits_0^{\frac{\pi }{2}} {x\sin xdx} \) và \(J = \int\limits_0^{\frac{\pi }{2}} {{x^2}co{\mathop{\rm s}\nolimits} xdx} \). Khẳng định nào sau đây đúng?
\(J = \frac{{{\pi ^2}}}{4} + 2I.\)
Cho hình phẳng (H) giới hạn bởi \(y = 2x – {x^2},{\rm{ }}y = 0\). Tính thể tích của khối tròn xoay thu được khi quay (H) xung quanh trục Ox ta được \(V = \pi \left( {\frac{a}{b} + 1} \right)\). Khi đó
\(a = 1,\;b = 15.\)
Họ nguyên hàm của hàm số: y = sin3x.cosx là
\(\frac{1}{4}{\sin ^4}x + C.\)
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} – 3{x^2} + 2x\), trục tung, trục hoành, đường thẳng \(x = \frac{3}{2}\), ta có kết quả:
\(\frac{9}{{64}}.\)
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là
\(F\left( x \right) = \frac{1}{2}\cos 2x + C.\)
Tìm nguyên hàm của hàm số f(x) thỏa điều kiện:\(f(x) = 2x – 3\cos x,F(\frac{\pi }{2}) = 3\)
\(F(x) = {x^2} - 3\sin x + 6 + \frac{{{\pi ^2}}}{4}.\)
Thể tích của khối tròn xoay tạo thành khi quay hình phẳng D giới hạn bởi các đường \(y = \sqrt {x – 1} \) , trục hoành, x=2 và x=5 quanh trục Ox bằng:
\(\int\limits_2^5 {\left( {x - 1} \right)dx} .\)
Tính tích phân: \(I = \int\limits_{ – 2}^{ – 1} {\sqrt {1 – 4x} } dx\), ta có kết quả
\(I = \frac{{5\sqrt 5 }}{6} - \frac{9}{2}.\)
Tính tích phân \(I = \int\limits_0^1 {x{e^x}dx} \), ta có kết quả:
\(I = - 1.\)
Hàm số \(F\left( x \right) = {e^x} – \cot x + C\) là nguyên hàm của hàm số \(f\left( x \right)\) nào?
\(f\left( x \right) = {e^{ - x}} + \frac{1}{{{{\sin }^2}x}}.\)
Cho \(F\left( x \right),G\left( x \right)\) lần lượt là một nguyên hàm của \(f\left( x \right),g\left( x \right)\) trên tập \(K \subset R\) và \(k,h \in R\). Kết luận nào sau đây là sai?
\(F'\left( x \right) = f\left( x \right),\forall x \in K.\)
Hàm số nào sau đây không phải là nguyên hàm của hàm số \(y = {e^{ – x}}\)
\( - {e^{ - x}} + C.\)
Thể tích V của khốii tròn xoay tạo thành khi ta cho hình phẳng D giới hạn bởi các đường \(y = f(x)\), trục Ox, x=a, x = b (a< b) quay quanh trục Ox được tính bởi công thức:
\(V = \int\limits_a^b {{f^2}(x)} dx.\)
Tính tích phân \(I = \int\limits_1^2 {\frac{1}{{2x – 1}}dx} .\)
\(I = \ln 2 - 1.\)
Tính tích phân \(I = \int\limits_0^\pi {x\sin xdx} \), ta có kết quả:
\(I = 0.\)
Tính tích phân: \(I = \int\limits_{\frac{1}{e}}^e {\frac{{dx}}{x}} \).
\(I = 2.\)
Nếu gọi V là thể của khối tròn xoay có được khi cho hình phẳng giới hạn bởi các đường \(x = 0,x = \frac{\pi }{4},y = 0,y = s{\rm{inx}}\) quay xung quanh trục Ox thì:
\(V = \frac{\pi }{2}\left( {\frac{\pi }{4} - \frac{1}{2}} \right).\)
Tính tích phân: \(I = \int\limits_0^1 {\frac{{{x^3}}}{{{x^4} + 1}}} dx\), ta có kết quả:
\(I = \frac{1}{4}\ln 2.\)
Công thức nào sau đây dùng để tính diện tích hình phẳng giới hạn bởi các đường y=2x, y=2, x=0, x=1 cho kết quả sai?
\(S = \int\limits_1^0 {\left( {{2^x} - 2} \right)dx} .\)
Công thức diện tích hình phẳng giới hạn bởi \(y = f\left( x \right)\), \(y = g\left( x \right)\) liên tục trên\(\left[ {a;b} \right]\) và hai đường thẳng \(x = a;x = b\) là
\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|} dx.\)
Cho hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục Ox, hai đường thẳng x = 0, x = 1 . Thể tích khối tròn xoay khi quay hình đó xung quanh trục hoành là:
\(\pi \int\limits_0^1 {{e^{2x}}dx} .\)
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục Ox, hai đường thẳng x=a, x=b (a
\(S = \pi \int\limits_a^b {{f^2}\left( x \right)} dx.\)
Tính tích phân: \(I = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{dx}}{{{{\sin }^2}x}}} \).
\(I = 0.\)
Cho \(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{\rm{cos}}xdx}}{{{\mathop{\rm s}\nolimits} {\rm{inx + cosx}}}}} \) và \(J = \int\limits_0^{\frac{\pi }{2}} {\frac{{{\rm{sin}}xdx}}{{{\mathop{\rm s}\nolimits} {\rm{inx + cosx}}}}} \). Biết rằng I = J thì giá trị của I và J bằng:
\(\frac{\pi }{4}.\)
Cho \(f\left( x \right)\) liên tục trên [0;10] thỏa mãn: \(\int\limits_0^{10} {f\left( x \right)} dx = 7\), \(\int\limits_2^6 {f\left( x \right)} dx = 3\). Khi đó, \(P = \int\limits_0^2 {f\left( x \right)dx} + \int\limits_6^{10} {f\left( x \right)dx} \) có giá trị là:
\(1.\)
Kết quả:
Hỗ trợ học tập hiệu quả với tài liệu PDF, Word - SachTruyen.com.vn chia sẻ các tài liệu học tập chất lượng, bao gồm sách, bài tập, đề thi, giúp người dùng học tập hiệu quả và đạt kết quả cao trong các kỳ thi.
DANH MỤC NỔI BẬT
Tài Liệu Toán, Tài liệu Tiếng Anh, Tài Liệu Công Dân, Tài Liệu Địa Lí, Tài Liệu Lịch Sử, Tài Liệu Sinh Học, Tài Liệu Ngữ Văn, Tài Liệu Hóa Học, Tài Liệu Vật lí.
VỀ CHÚNG TÔI